首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Selective detection of Cathepsin E proteolytic activity
Authors:Wael R Abd-Elgaliel  Ching-Hsuan Tung
Institution:Department of Radiology, The Methodist Hospital Research Institute, Weill Cornell Medical College, Houston, TX, USA
Abstract:

Background

Aspartic proteases Cathepsin (Cath) E and D are two different proteases, but they share many common characteristics, including molecular weight, catalytic mechanism, substrate preferences, proteolytic conditions and inhibition susceptibility. To define the biological roles of these proteases, it is necessary to elucidate their substrate specificity. In the present study, we report a new peptide–substrate that is only sensitive to Cath E but not Cath D.

Methods

Substrate e, Mca-Ala-Gly-Phe-Ser-Leu-Pro-Ala-Lys(Dnp)-DArg-CONH2, designed in such a way that due to the close proximity of a Mca-donor and a Dnp-acceptor, near complete intramolecular quenching effect was achieved in its intact state. After the proteolytic cleavage of the hydrophobic motif of peptide substrate, both Mca and Dnp would be further apart, resulting in bright fluorescence.

Results

Substrate e showed a 265 fold difference in the net fluorescence signals between Cath E and D. This Cath E selectivity was established by having -Leu**Pro- residues at the scissile peptide bond. The confined cleavage site of substrate e was confirmed by LC-MS. The catalytic efficiency (Kcat/KM) of Cath E for substrate e was 16.7 μM1 S1. No measurable catalytic efficiency was observed using Cath D and no detectable fluorescent changes when incubated with Cath S and Cath B.

Conclusions

This study demonstrated the promise of using the developed fluorogenic substrate e as a selective probe for Cath E proteolytic activity measurement.

General significance

This study forms the foundation of Cath E specific inhibitor development in further studies.
Keywords:Cath  Cathepsin  Mca  7-Methoxycoumarin-4-acetic acid  Dnp  dinitrophenyl  RP-HPLC  reversed phase high performance liquid chromatography  MS  mass spectra  UV  ultraviolet  TNBS  2  4  6-trinitrobenzenesulfonic acid
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号