首页 | 本学科首页   官方微博 | 高级检索  
     


Residual Factor VIII-like cofactor activity of thioredoxin and related oxidoreductases
Authors:Henry K. Bayele  Paul J. Murdock  K. John Pasi
Affiliation:Department of Haematology, Royal Free and University College Medical School, University College London, Hampstead Campus, Rowland Hill Street, London NW3 2PF, UK
Abstract:

Background

Factor VIII is the cofactor for Factor X activation by Factor IXa. Activated Factor X, Factor Xa, in turn activates prothrombin in a sequence that leads to fibrin clot formation at the site of vascular injury. Although the biochemistry of the cascade has been well studied, the molecular mechanism underlying the cofactor role of Factor VIII is not understood.

Methods

We screened a bacterial peptide display library with Factor IXa and Factor X co-immobilized on tosylactivated Dynabeads which were then used as platelet surrogates. Validation of peptide selection procedure and comparison of Factor VIII-like cofactor activity of oxidoreductases was performed using COATEST assays. Determination of Factor VIII as a folding catalyst with potential disulphide isomerase activity was determined using the RNase A renaturation assay.

Results

We set out to identify the cofactor requirements of the Factor IXa/Factor X procoagulant complex by random peptide display, and isolated a peptide with the active-site sequence, CGPC, of thioredoxin. This peptide was able to activate Factor X in a Factor IXa-dependent manner. Redox catalysts or oxidoreductases with homologous active-site vicinal cysteines such as PDI and DsbA also mimicked Factor VIII in their requirement of Factor IXa in Factor X activation. However, the cofactor activity of these peptides was up to a 1000-fold lower than that of Factor VIII and they were therefore unable to catalyse blood coagulation. Factor X activation by PDI and by Factor VIII was abolished by oxidation in an isolated system, which implies a possible role for thiol–disulphide exchange in the activity of the tenase complex. Using scrambled RNase A as a surrogate substrate, we also found that Factor VIII could renature this enzyme.

Conclusion

Our findings suggest that Factor VIII may be a specialized folding catalyst with disulphide isomerase activity. We suggest that it is this activity that may underlie its cofactor function in Factor X activation, and that this function is interchangeable with classical oxidoreductases.

General significance

The possible involvement of thiol–disulphide interchange as a mechanism underlying Factor VIII cofactor activity may provide some insight into the biochemistry of the intrinsic tenase complex.
Keywords:DsbA, defective in disulphide bond formation   GSH, reduced glutathione   GSSG, oxidized glutathione   PDI, protein disulphide isomerase   TNB, thionitrobenzoic acid   Trx, thioredoxin   sRNase A, scrambled ribonuclease A
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号