首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Soft tissue structures resisting anterior instability in a computational glenohumeral joint model
Authors:Kevin A Elmore
Institution:1. Orthopaedic Research Laboratory, Departments of Biomedical Engineering &2. Orthopaedic Surgery, Virginia Commonwealth University, Richmond, VA, USA
Abstract:The glenohumeral joint is the most dislocated joint in the body due to the lack of bony constraints and the dependence on soft tissue for stability. The roles that various structures provide to joint function are important for understanding injury treatment and orthopaedic device design purposes. The goal of this study was to develop a computational model of the glenohumeral joint whereby joint behaviour was dictated by articular contact, ligamentous constraints, muscle loading and external perturbations. The bone structure of the computational model consisted of assembled computer tomographic images of the scapula, humerus and clavicle. The soft tissue elements were composed of forces and tension-only springs that represented muscles and ligaments. Validation of this model was achieved by comparing computational predictions to the results of a cadaveric experiment in which the relative contribution of muscles and ligaments to anterior joint stability was examined. The computational model predicted an anterior subluxation force that was similar to the cadaveric experimental results in humeral external rotation. The individual structure results showed the subscapularis to be critical to stabilisation in both neutral and external rotations, the biceps stabilised the joint in neutral but not in external rotation, and the inferior glenohumeral ligament resisted anterior displacement only in external rotation. The model's predictions were similar to the conclusions of the cadaveric experiment and the literature. Knowledge gained from this type of model could assist in further understanding the contribution of soft tissue stabilisers to joint function, pre-operative planning or the design of orthopaedic implants.
Keywords:musculoskeletal  computational model  shoulder  subluxation  dislocation  validation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号