首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Utilization of pyruvate and pyruvate precursors by normal and carcinogen-altered rat tracheal epithelial cells in culture
Authors:W J Wasilenko  A C Marchok
Abstract:The metabolism of 14C]pyruvate, 14C]glucose, 14C]glutamine and 14C]alanine was compared between normal rat tracheal epithelial cells and carcinogen-altered cells derived from dimethylbenz(a)anthracene-exposed tracheal implants. Normal primary cultures (NPC) of tracheal cells are distinguished by their need for pyruvate-supplemented medium for growth and survival. The altered cells were selected out by their survival in the unsupplemented medium. Compared to the selected primary cultures (SPC), the NPC showed a three- to four-fold higher incorporation of radioactivity from 2-14C]pyruvate in all the macromolecular fractions, as well as in all the metabolites isolated from the acid soluble fraction and from lactic acid isolated from the medium. U-14C]glucose was also incorporated at higher levels into lactic acid isolated from the acid soluble fraction and the medium of NPC. These data indicate a higher rate of glycolysis in the normal tracheal cells. This was supported by the findings of a two-fold greater glucose consumption and two-fold higher production of lactic acid isolated from the NPC medium. Lactate dehydrogenase activity was also two-fold higher in NPC. Thus, despite the apparently higher level of pyruvate production in the NPC, exogenous pyruvate is necessary to satisfy the metabolic needs of NPC. The utilization of U-14C]glutamine or U-14C]alanine was not markedly different between NPC and SPC. Furthermore, radioactivity from both of the amino acids was recovered in lactic acid in the medium, indicating that both cell types can derive pyruvic acid from either glutamine or alanine. SPC apparently do not use these routes to supply higher levels of pyruvic acid for survival in culture. The oxidation of none of the radioactive metabolites into CO2 was distinctly different between NPC and SPC except for the 1.7-fold higher utilization of 1-14C]glucose along the oxidative arm of the pentose cycle in the normal cells.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号