首页 | 本学科首页   官方微博 | 高级检索  
     


A MOLECULAR PHYLOGENY OF THE HETEROKONT ALGAE BASED ON ANALYSES OF CHLOROPLAST-ENCODED rbcL SEQUENCE DATA1
Authors:Niels Daugbjerg  Robert A. Andersen
Abstract:Nearly complete ribulose-1,5-bisphosphate carboxylase/ oxygenase (rbcL)sequences from 27 taxa of heterokont algae were determined and combined with rbcL sequences obtained from GenBank for four other heterokont algae and three red algae. The phylogeny of the morphologically diverse haterokont algae was inferred from an unambiguously aligned data matrix using the red algae as the root, Significantly higher levels of mutational saturation in third codon positions were found when plotting the pair-wise substitutions with and without corrections for multiple substitutions at the same site for first and second codon positions only and for third positions only. In light of this observation, third codon positions were excluded from phylogenetic analyses. Both weighted-parsimony and maximum-likelihood analyses supported with high bootstrap values the monophyly of the nine currently recognized classes of heterokont algae. The Eustigmatophyceae were the most basal group, and the Dictyochophyceae branched off as the second most basal group. The branching pattern for the other classes was well supported in terms of bootstrap values in the weightedparsimony analysis but was weakly supported in the maximum-likelihood analysis (<50%). In the parsimony analysis, the diatoms formed a sister group to the branch containing the Chrysophyceae and Synurophyceae. This clade, charactetized by siliceous structures (frustules, cysts, scales), was the sister group to the Pelagophyceae/Sarcinochrysidales and Phaeo-/Xantho-/ Raphidophyceae clades. In the latter clade, the raphido-phytes were sister to the Phaeophyceae and Xanthophyceae. A relative rate test revealed that the rbcL gene in the Chrysophyceae and Synurophyceae has experienced a significantly different rate of substitutions compared to other classes of heterokont algae. The branch lengths in the maximum-likelihood reconstruction suggest that these two classes have evolved at an accelerated rate. Six major carotenoids were analyzed cladistically to study the usefulness of carotenoid pigmentation as a class-level character in the heterokont algae. In addition, each carotenoid was mapped onto both the rbcL tree and a consensus tree derived from nuclear-encoded small-subunit ribosomal DNA (SSU rDNA) sequences. Carotenoid pigmentation does not provide unambiguous phylogenetic information, whether analyzed cladistically by itself or when mapped onto phylogenetic trees based upon molecular sequence data.
Keywords:Key index words: carotenoids  chromophytes  evolution  heterokont algae  maximum-likelihood  parsimony  phylogeny  rbcL  red algae  RuBisCo  stramenopiles
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号