首页 | 本学科首页   官方微博 | 高级检索  
     


A statistical method for excluding non-variable CpG sites in high-throughput DNA methylation profiling
Authors:Hailong Meng  Andrew R Joyce  Daniel E Adkins  Priyadarshi Basu  Yankai Jia  Guoya Li  Tapas K Sengupta  Barbara K Zedler  E Lenn Murrelle  Edwin JCG van den Oord
Affiliation:(1) Altria Client Services, Research Development & Engineering, 601 E. Jackson Street, Richmond, VA 23219, USA;(2) Venebio Group, LLC, Virginia Bio-Technology Research Park, Richmond, Virginia, USA;(3) Center for Biomarker Research and Personalized Medicine, School of Pharmacy, Virginia Commonwealth University, Richmond, VA 23298, USA;(4) Memorial Sloan-Kettering Cancer Center, 415 East 68th Street, New York, NY 10021, USA;(5) Bon Secours Virginia Health System, 14331 Roderick Ct., Midlothian, VA 23113, USA;(6) American Type Culture Collection, 10801 University Blvd, Manassas, VA 20110, USA
Abstract:

Background  

High-throughput DNA methylation arrays are likely to accelerate the pace of methylation biomarker discovery for a wide variety of diseases. A potential problem with a standard set of probes measuring the methylation status of CpG sites across the whole genome is that many sites may not show inter-individual methylation variation among the biosamples for the disease outcome being studied. Inclusion of these so-called "non-variable sites" will increase the risk of false discoveries and reduce statistical power to detect biologically relevant methylation markers.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号