首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Placental overgrowth and fertility defects in mice with a hypermorphic allele of epidermal growth factor receptor
Authors:Jennifer Dackor  Manyu Li  David W Threadgill
Institution:(1) Department of Genetics, University of North Carolina, Chapel Hill, NC 27599, USA;(2) Department of Cell and Molecular Physiology, University of North Carolina, Chapel Hill, NC 27599, USA;(3) Department of Genetics, North Carolina State University, Campus Box 7614, Raleigh, NC 27695, USA
Abstract:Epidermal growth factor receptor (EGFR) is a member of the ERBB family of receptor tyrosine kinases that has been shown to play an important developmental and physiologic role in many aspects of pregnancy. We have previously shown in mice that Egfr tm1Mag nullizygous placentas have fewer proliferative trophoblasts than wild-type and exhibit strain-specific defects in the spongiotrophoblast and labyrinth layers. In this study we used mice with the hypermorphic Egfr Dsk5 allele to study the effects of increased levels of EGFR signaling on placental development. On three genetic backgrounds, heterozygosity for Egfr Dsk5 resulted in larger placental size with a more prominent spongiotrophoblast layer and increased expression of glycogen cell-specific genes. The C3HeB/FeJ strain showed additional placental enlargement of Egfr Dsk5 homozygotes with a significant number of homozygous embryos dying prior to 15.5 days post-coitus (dpc). We also observed strain-specific subfertility in Egfr Dsk5 heterozygous females and pregnancy loss was dependent on maternal factors rather than embryo genotype. Higher levels of phospho-EGFR were detected in the uterus of Egfr Dsk5 heterozygotes but the structure of Egfr Dsk5 heterozygous nonpregnant uteri appeared similar to wild-type. Collectively, our results demonstrate that mice with increased levels of EGFR signaling exhibit an extensive level of genetic background-dependent phenotypic variability. In addition, EGFR promotes growth of the placental spongiotrophoblast layer in mice, and EGFR expressed in the uterine stroma may play an underappreciated role in preparation of the uterus for embryo implantation.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号