首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Endogenous sex hormones affect the mutagen-induced chromosome damage by altering a caffeine-sensitive checkpoint
Authors:Cocchi Leonardo  Scarcelli Vittoria  Puliti Aldamaria  Barale Roberto  Sbrana Isabella
Institution:

Department of Human and Environmental Sciences, University of Pisa, Vian San Guiseppe 22, Pisa 56126, Italy

Abstract:In the present study we analysed the effect of endogenous sex hormones on the SCE frequencies induced in vitro by mitomycin C (MMC), a bifunctional alkylating agent producing high chromosome damage and mitotic arrest. The analysis has been performed on lymphocytes obtained at three different phases of menstrual cycle, from women with regular cycle and hormones dosage. At all phases we further analysed the effect of a post-treatment with caffeine, an agent that it is known to overrride the DNA damage checkpoints.

After MMC, the cultures obtained at ovulation and luteal phases have SCE frequencies statistically higher than the cultures obtained at the progestogenic phase, showing increases of 15 and 25%, respectively. After caffeine, the MMC treated cultures which were set up at the progestogenic phase show a high potentiation of SCE frequencies (28%) whereas the treated cultures set up at ovulatory and luteal phases show little or no potentiation.

These findings demonstrate that the endogenous hormones greatly modulate the SCE frequencies induced by the mutagen; they also indicate that hormones action competes with the caffeine effect. Caffeine acts by abrogating the mitotic arrest produced by DNA damage and induced cells with a higher chromosome damage into a premature mitosis. Our findings suggest that endogenous hormones could overcome the checkpoint controls activated in cells after mutagenic exposure. This action may be an epigenetic mechanism relevant in hormone carcinogenesis.

Keywords:Endogenous hormones  Menstrual cycle  Mitomycin C  Caffeine  Sister chromatid exchanges (SCE)
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号