首页 | 本学科首页   官方微博 | 高级检索  
     


The role of ApcD and ApcF in energy transfer from phycobilisomes to PS I and PS II in a cyanobacterium
Authors:Ashby  Mark K.  Mullineaux  Conrad W.
Affiliation:(1) Department of Biology, University College London, Gower Street, Darwin Building, London, WC1E 6BT, UK
Abstract:The role of the phycobilisome core components, ApcD and ApcF, in transferring energy from the phycobilisome to PS I and PS II in the cyanobacterium Synechocystis sp. PCC6803 has been investigated. The genes encoding these proteins have been disrupted in the genomes of wild type Synechocystis sp. PCC6803 and a PS II deficient mutant, PsbD1CD2-, by inserting antibiotic resistance genes into their coding regions. Data from fluorescence emission spectra and pigment content analysis for these inactivation mutants is presented. These data suggest that both ApcD and ApcF are involved in the energy transfer route to PS II and PS I. In both cases, the energy transfer may to the reaction centres may be via the chromophore of ApcE (the L cm) or anchor polypeptide). The major route of energy transfer to both kinds of reaction centre appears to involve ApcF rather than ApcD. When both ApcF and ApcD are absent, the phycobilisomes are unable to transfer energy to either reaction centre. We suggest a model for the pathways of energy transfer from the phycobilisomes to PS I and PS II.
Keywords:ApcE  light-harvesting  state transitions  Synechocystis sp. PCC6803
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号