首页 | 本学科首页   官方微博 | 高级检索  
     


Enhancement of whole body glucose uptake during and after human skeletal muscle low-frequency electrical stimulation.
Authors:Taku Hamada  Hideki Sasaki  Tatsuya Hayashi  Toshio Moritani  Kazuwa Nakao
Affiliation:Laboratory of Applied Physiology, Kyoto University Graduate School of Human and Environmental Studies, Kyoto 606-8501, Japan.
Abstract:There is considerable evidence to suggest that electrical stimulation (ES) activates glucose uptake in rodent skeletal muscle. It is, however, unknown whether ES can lead to similar metabolic enhancement in humans. We employed low-frequency ES through surface electrodes placed over motor points of quadriceps femoris muscles. In male subjects lying in the supine position, the highest oxygen uptake was obtained by a stimulation pattern with 0.2-ms biphasic square pulses at 20 Hz and a 1-s on-off duty cycle. Oxygen uptake was increased by approximately twofold throughout the 20-min stimulation period and returned to baseline immediately after stimulation. Concurrent elevation of the respiratory exchange ratio and blood lactate concentration indicated anaerobic glycogen breakdown and utilization during ES. Whole body glucose uptake determined by the glucose disposal rate during euglycemic clamp was acutely increased by 2.5 mg. kg(-1). min(-1) in response to ES and, moreover, remained elevated by 3-4 mg. kg(-1). min(-1) for at least 90 min after cessation of stimulation. Thus the stimulatory effect of ES on whole body glucose uptake persisted not only during, but also after, stimulation. Low-frequency ES may become a useful therapeutic approach to activate energy and glucose metabolism in humans.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号