首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Kinetic studies on the regulation of rabbit liver pyruvate kinase
Authors:M G Irving and  J F Williams
Institution:School of Biochemistry, University of New South Wales, Kensington, N.S.W. 2033, Australia
Abstract:Two kinetically distinct forms of pyruvate kinase (EC 2.7.1.40) were isolated from rabbit liver by using differential ammonium sulphate fractionation. The L or liver form, which is allosterically activated by fructose 1,6-diphosphate, was partially purified by DEAE-cellulose chromatography to give a maximum specific activity of 20 units/mg. The L form was allosterically activated by K(+) and optimum activity was recorded with 30mm-K(+), 4mm-MgADP(-), with a MgADP(-)/ADP(2-) ratio of 50:1, but inhibition occurred with K(+) concentrations in excess of 60mm. No inhibition occurred with either ATP or GTP when excess of Mg(2+) was added to counteract chelation by these ligands. Alanine (2.5mm) caused 50% inhibition at low concentrations of phosphoenolpyruvate (0.15mm). The homotropic effector, phosphoenolpyruvate, exhibited a complex allosteric pattern (n(H)=2.5), and negative co-operative interactions were observed in the presence of low concentrations of this substrate. The degree of this co-operative interaction was pH-dependent, with the Hill coefficient increasing from 1.1 to 3.2 as the pH was raised from 6.5 to 8.0. Fructose 1,6-diphosphate interfered with the activation by univalent ions, markedly decreased the apparent K(m) for phosphoenolpyruvate from 1.2mm to 0.2mm, and transformed the phosphoenolpyruvate saturation curve into a hyperbola. Concentrations of fructose 1,6-diphosphate in excess of 0.5mm inhibited this stimulated reaction. The M or muscle-type form of the enzyme was not activated by fructose 1,6-diphosphate and gave a maximum specific activity of 0.3 unit/mg. A Michaelis-Menten response was obtained when phosphoenolpyruvate was the variable substrate (K(m)=0.125mm), and this form was inhibited by ATP, as well as alanine, even in the presence of excess of Mg(2+).
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号