首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterization of Bradyrhizobium strains indigenous to Western Australia and South Africa indicates remarkable genetic diversity and reveals putative new species
Institution:1. Embrapa Soja, C.P. 231, 86001-970, Londrina, Paraná, Brazil;2. Department of Biotechnology, Universidade Estadual de Londrina, C.P. 10011, 86057-970, Londrina, Paraná, Brazil;3. Centre for Rhizobium Studies (CRS), Murdoch University, 90 South St. Murdoch, WA, Australia;1. College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, Henan Province, 450000, P.R. China;2. Henan Key Laboratory of Cold Chain Food Quality and Safety Control, Henan Province, 450000, P.R. China;3. Collaborative Innovation Center for Food Production and Safety of Henan Province, Zhengzhou 450002, Henan Province, P.R. China;4. LSTM, Univ Montpellier, CIRAD, INRAe, Institut Agro, IRD, Montpellier, France;5. Guyuan Branch of Ningxia Academy of Agricultural and Forestry Sciences, Guyuan 756000, Ningxia Province, P.R. China;6. State Key Laboratory of Agrobiotechnology, Beijing 100193, China; College of Biological Sciences and Rhizobium Research Center, China Agricultural University, Beijing 100193, P.R. China;7. Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 México, D. F., México;8. Department of Research and Development, Biotechnology, Uttaranchal University, Dehradun-248007, India;9. The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK;1. Centro de Biotecnología y Genómica de Plantas (CBGP), Universidad Politécnica de Madrid – Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, 28223 Pozuelo de Alarcón, Madrid, Spain;2. Departamento de Biotecnología y Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid, 28040 Madrid, Spain;3. Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas (IRNASA-CSIC), Salamanca, Spain;4. Unidad Asociada Grupo de Interacción Planta-Microorganismo Universidad de Salamanca-IRNASA (CSIC);5. Instituto de Ciencias Agrarias, Consejo Superior de Investigaciones Científicas (ICA-CSIC), 28006 Madrid, Spain;1. Laboratory of General and Agricultural Microbiology, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855 Athens, Greece;2. Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, Votanikos, 11855 Athens, Greece;1. State Key Lab of Agrobiotechnology, Ministry of Agriculture Key Lab of Soil Microbiology, College of Biological Sciences, China Agricultural University, Beijing 100193, PR China;2. Escuela Nacional de Ciencias Biologicas, Instituto Politecnico Nacional, 11340 Mexico D. F., Mexico;3. Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing 100081, PR China;1. State Key Laboratory of Crop Stress Biology in Arid Areas, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi 712100, China;2. Bioinformatics Center, Northwest A&F University, Yangling, Shaanxi 712100, China;3. Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, 11340 México D.F., Mexico;1. Faculty of Chemistry, Biotechnology and Food Science, Norwegian University of Life Sciences (NMBU), P.O. Box 5003, N-1432 Ås, Norway;2. College of Natural and Computational Sciences, Department of Biology, Hawassa University, P.O. Box 5, Hawassa, Ethiopia;3. International Livestock Research Institute, P.O. Box 5689, Addis Ababa, Ethiopia
Abstract:Bradyrhizobium are N2-fixing microsymbionts of legumes with relevant applications in agricultural sustainability, and we investigated the phylogenetic relationships of conserved and symbiotic genes of 21 bradyrhizobial strains. The study included strains from Western Australia (WA), isolated from nodules of Glycine spp. the country is one genetic center for the genus and from nodules of other indigenous legumes grown in WA, and strains isolated from forage Glycine sp. grown in South Africa. The 16S rRNA phylogeny divided the strains in two superclades, of B. japonicum and B. elkanii, but with low discrimination among the species. The multilocus sequence analysis (MLSA) with four protein-coding housekeeping genes (dnaK, glnII, gyrB and recA) pointed out seven groups as putative new species, two within the B. japonicum, and five within the B. elkanii superclades. The remaining eleven strains showed higher similarity with six species, B. lupini, B. liaoningense, B. yuanmingense, B. subterraneum, B. brasilense and B. retamae. Phylogenetic analysis of the nodC symbiotic gene clustered 13 strains in three different symbiovars (sv. vignae, sv. genistearum and sv. retamae), while seven others might compose new symbiovars. The genetic profiles of the strains evaluated by BOX-PCR revealed high intra- and interspecific diversity. The results point out the high level of diversity still to be explored within the Bradyrhizobium genus, and further studies might confirm new species and symbiovars.
Keywords:MLSA  Phylogenetic diversity  Taxonomy  Biological nitrogen fixation  Nodulation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号