首页 | 本学科首页   官方微博 | 高级检索  
     


Root nodules of Genista germanica harbor Bradyrhizobium and Rhizobium bacteria exchanging nodC and nodZ genes
Affiliation:Department of Genetics and Microbiology, M. Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland
Abstract:A collection of 18 previously unstudied strains isolated from root nodules of Genista germanica (German greenweed) grown in southeast Poland was evaluated for the level of genetic diversity using the BOX-PCR technique and the phylogenetic relationship based on both core (16S rRNA, dnaK, ftsA, glnII, gyrB, recA, rpoB) and nodulation (nodC and nodZ) gene sequences. Each of the 18 G. germanica root nodule isolates displayed unique BOX-PCR patterns, indicating their high level of genomic heterogeneity. Based on the comparative 16S rDNA sequence analysis, 12 isolates were affiliated to the Bradyrhizobium genus and the other strains were most similar to Rhizobium species. Phylogenetic analysis of the core gene sequences indicated that the studied Bradyrhizobium bacteria were most closely related to Bradyrhizobium japonicum, whereas Rhizobium isolates were most closely related to Rhizobium lusitanum and R. leguminosarum. The phylogenies of nodC and nodZ for the Rhizobium strains were incongruent with each other and with the phylogenies inferred from the core gene sequences. All Rhizobium nodZ gene sequences acquired in this study were grouped with the sequences of Bradyrhizobium strains. Some of the studied Rhizobium isolates were placed in the nodC phylogenetic tree together with reference Rhizobium species, while the others were closely related to Bradyrhizobium bacteria. The results provided evidence for horizontal transfer of nodulation genes between Bradyrhizobium and Rhizobium. However, the horizontal transfer of nod genes was not sufficient for Rhizobium strains to form nodules on G. germanica roots, suggesting that symbiotic genes have to be adapted to the bacterial genome.
Keywords:Horizontal gene transfer  Nodulation genes  Housekeeping genes
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号