首页 | 本学科首页   官方微博 | 高级检索  
     


Mutation of the lbp-5 gene alters metabolic output in Caenorhabditis elegans
Authors:Mo Xu  Eun-Young Choi  Young-Ki Paik
Affiliation:Department of Biochemistry and Department of the Integrated Omics for the Biomedical Science, WCU Program, College of Life Science and Biotechnology, Yonsei Proteome Research Center, Yonsei University, Seoul 120-749, Korea
Abstract:Intracellular lipid-binding proteins (LBPs) impact fatty acid homeostasis in various ways, including fatty acid transport into mitochondria. However, the physiological consequences caused by mutations in genes encoding LBPs remain largely uncharacterized. Here, we explore the metabolic consequences of lbp-5 gene deficiency in terms of energy homeostasis in Caenorhabditis elegans. In addition to increased fat storage, which has previously been reported, deletion of lbp-5 attenuated mitochondrial membrane potential and increased reactive oxygen species levels. Biochemical measurement coupled to proteomic analysis of the lbp-5(tm1618) mutant revealed highly increased rates of glycolysis in this mutant. These differential expression profile data support a novel metabolic adaptation of C. elegans, in which glycolysis is activated to compensate for the energy shortage due to the insufficient mitochondrial β-oxidation of fatty acids in lbp-5 mutant worms. This report marks the first demonstration of a unique metabolic adaptation that is a consequence of LBP-5 deficiency in C. elegans. [BMB Reports 2014; 47(1): 15-20]
Keywords:C. elegans   Fatty acid metabolism   lbp-5   Obesity
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号