首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Altered regulatory function of two familial hypertrophic cardiomyopathy troponin T mutants.
Authors:P Mukherjea  L Tong  J G Seidman  C E Seidman  S E Hitchcock-DeGregori
Institution:Department of Neuroscience and Cell Biology, Robert Wood Johnson Medical School, Piscataway, New Jersey 08854, USA.
Abstract:Mutations in the gene encoding human cardiac troponin T can cause familial hypertrophic cardiomyopathy, a disease that is characterized by ventricular hypertrophy and sudden, premature death. Troponin T is the tropomyosin-binding subunit of troponin required for thin filament regulation of contraction. One mutation, a change in the intron 15 splice donor site, results in two truncated forms of troponin T Thierfelder et al. (1994) Cell 77, 701-712]. In one form, the mRNA skips exon 16 that encodes the C-terminal 14 amino acids; in the other, seven novel residues replace the exon 15- and 16-encoded C-terminal 28 amino acids. The two troponin T cDNAs were expressed in Escherichia coli for functional analysis. Both C-terminal deletion mutants formed a complex with cardiac troponin C and troponin I that exhibited the same concentration dependence as wild-type for regulation of the actomyosin MgATPase. However, both mutants showed severely reduced activation of the regulated actomyosin in the presence of Ca2+, though the inhibition in the absence of Ca2+ and the Ca(2+)-dependence of activation were not altered. The C-terminal deletions reduce the effectiveness of Ca(2+)-troponin to switch the thin filament from the "off" to the "on" state. Both mutant troponin Ts have reduced affinity for troponin I; the shorter mutant is at least 6-fold weaker than wild-type. The low level of activation of the ATPase would be consistent with reduced contractile performance, and the results suggest reduced troponin I affinity may be the molecular basis for the disease.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号