首页 | 本学科首页   官方微博 | 高级检索  
     


Mobility of individual 5-fluorouridine residues in 5-fluorouracil-substituted Escherichia coli valine transfer RNA. A 19F nuclear magnetic resonance relaxation study
Authors:C C Hardin  J Horowitz
Affiliation:Department of Biochemistry and Biophysics, Iowa State University, Ames 50011.
Abstract:19F nuclear magnetic resonance (n.m.r.) relaxation parameters of 5-fluorouracil-substituted Escherichia coli tRNA(Val)1 were measured and used to characterize the internal mobility of individual 5-fluorouridine (FUrd) residues in terms of several models of molecular motion. Measured relaxation parameters include the spin-lattice (T1) relaxation time at 282 MHz, the 19F(1H) NOE at 282 MHz, and the spin-spin (T2) relaxation time, estimated from linewidth data at 338 MHz, 282 MHz and 84 MHz. Dipolar and chemical shift anisotropy contributions to the 19F relaxation parameters were determined from the field-dependence of T2. The results demonstrate a large chemical shift anisotropy contribution to the 19F linewidths at 282 and 338 MHz. Analysis of chemical shift anisotropy relaxation data shows that, relative to overall tumbling of the macromolecule, negligible torsional motion occurs about the glycosidic bond of FUrd residues in 19F-labeled tRNA(Val)1, consistent with the maintenance of base-base hydrogen-bond and/or stacking interactions at all fluorouracil residues in the molecule. The dipolar relaxation data are analyzed by using the "two-state jump" and "diffusion in a cone" formalisms. Motional amplitudes (theta) are interpreted as being due to pseudorotational fluctuations within the ribose ring of the fluorinated nucleoside. These amplitudes range from approximately 30 degrees to 60 degrees, assuming a correlation time (tau i,2) of 1.6 ns. By using available 19F n.m.r. assignment data for the 14 FUrd residues in 5-fluorouracil-substituted tRNA(Val)1, these motional amplitudes can be correlated directly with the environmental domain of the residue. Residues located in tertiary and helical structural domains show markedly less motion (theta approximately equal to 30 to 35 degrees) than residues located in loops (theta approximately equal to 45 to 60 degrees). A correlation between residue mobility and solvent exposure is also demonstrated. The amplitudes of internal motion for specific residues agree quite well with those derived from X-ray diffraction and molecular dynamics data for yeast tRNA(Phe).
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号