首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Circular RNA CircSLC8A1 contributes to osteogenic differentiation in hBMSCs via CircSLC8A1/miR-144-3p/RUNX1 in periprosthetic osteolysis
Authors:Boning Yang  Yu Qin  Ao Zhang  Penghao Wang  Hua Jiang  Yunyi Shi  Guanchao You  Dianlin Shen  Shenghui Ni  Lei Guo  Ying Liu
Institution:1. Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China;2. Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China

Contribution: ?Investigation (equal);3. Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China

Contribution: Software (equal);4. Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China

Contribution: Supervision (equal);5. Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China

Contribution: Resources (equal);6. Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China

Contribution: Data curation (equal);7. Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China

Contribution: Data curation (equal), Formal analysis (equal);8. Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China

Contribution: Validation (equal);9. Department of Orthopedic Surgery, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China

Contribution: Resources (equal), Writing - review & editing (equal);10. Department of Nursing, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China

Abstract:Circular RNAs (circRNAs) are often found in eukaryocyte and have a role in the pathogenesis of a variety of human disorders. Our related research has shown the differential expression of circRNAs in periprosthetic osteolysis (PPOL). However, the involvement of circRNAs in the exact process is yet unknown. CircSLC8A1 expression was evaluated in clinical samples and human bone marrow mesenchymal stem cells (hBMSCs) in this investigation using quantitative real-time PCR. In vitro and in vivo studies were conducted to explicate its functional role and pathway. We demonstrated CircSLC8A1 is involved in PPOL using gain- and loss-of-function methods. The association of CircSLC8A1 and miR-144-3p, along with miR-144-3p and RUNX1, was predicted using bioinformatics. RNA pull-down and luciferase assays confirmed it. The impact of CircSLC8A1 in the PPOL-mouse model was also investigated using adeno-associated virus. CircSLC8A1 was found to be downregulated in PPOL patients' periprosthetic tissues. Overexpression of CircSLC8A1 promoted osteogenic differentiation (OD) and inhibited apoptosis of hBMSCs in vitro. The osteogenic markers of RUNX1, osteopontin (OPN) and osteocalcin (OCN) were significantly upregulated in hBMSCs after miR-144-3p inhibitor was transferred. Mechanistic analysis demonstrated that CircSLC8A1 directly bound to miR-144-3p and participated in PPOL through the miR-144-3p/RUNX1 pathway in hBMSCs. Micro-CT and quantitative analysis showed that CircSLC8A1 markedly inhibited PPOL, and osteogenic markers (RUNX1, OPN and OCN) were significantly increased (P<0.05) in the mice model. Our findings prove that Circ SLC8A1 exerted a regulatory role in promoting osteogenic differentiation in hBMSCs, and CircSLC8A1/miR-144-3p/RUNX1 pathway may provide a potential target for prevention of PPOL.
Keywords:CircSLC8A1  hBMSCs  miR-144-3p  osteogenic differentiation  osteopontin  periprosthetic osteolysis  RUNX1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号