首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Ca binding to the human red cell membrane: Characterization of membrane preparations and binding sites
Authors:Carl M Cohen  A K Solomon
Institution:(1) Biophysical Laboratory, Harvard Medical School, 02115 Boston, Massachusetts;(2) Biological Laboratories, Harvard University, 16 Divinity Avenue, Cambridge, Massachusetts
Abstract:Summary Inside out and right side out vesicles were used to study the sidedness of Ca binding to the human red cell membrane. It was shown that these vesicles exhibited only a limited permeability to Ca, enabling the independent characterization of Ca binding to the extracellular and cytoplasmic membrane surfaces. Ca binding was studied in 10 mM Tris HCl at pH 7.4, 22±2°C and was shown to be complete in under 5 min. Scatchard plots were made from Ca binding data obtained at free Ca concentrations in the range of 10–6 to 10–3M. Under these conditions inside out vesicles exhibit two independent binding sites for Ca with association constants of 1×105 and 6×103 M–1, and right side out vesicles exhibit three independent binding sites with association constants of 2×105, 1.4×104 and 3×102M–1. Upon the addition of 0.1M KCl a third, high affinity site was found on inside out vesicles with an association constant of 3×105, (in 0.1 M KCl). Ca binding to inside out vesicles increased nearly linearly with pH in the, range of pH 4 to pH 11, while binding to right side out vesicles remained practically unchanged in the range of pH 7 to pH 9. Progressive increase of the ionic strength of the medium by the addition of K, Mg or Tris decreased Ca binding to inside out vesicles as did the addition of ATP. Comparison of a series of cation competitors for Ca binding sites on inside out vesicles at 0.003 mM Ca showed that La was the most effective competitor of all while Cd was the most effective divalent cation competitor of those tested. Our findings suggest that the effects of low concentrations of Ca at the inner surface of the red cell membrane are mediated primarily through Ca binding to site 1 (and, possibly site 2) of inside out vesicles of which there are approximately 1.6×105 per equivalent cell.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号