首页 | 本学科首页   官方微博 | 高级检索  
     


Combinations of protein-disulfide isomerase domains show that there is little correlation between isomerase activity and wild-type growth
Authors:Xiao R  Solovyov A  Gilbert H F  Holmgren A  Lundström-Ljung J
Affiliation:Medical Nobel Institute for Biochemistry, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 77 Stockholm, Sweden.
Abstract:Protein-disulfide isomerase (PDI) has five domains: a, b, b', a' and c, all of which except c have a thioredoxin fold. A single catalytic domain (a or a') is effective in catalyzing oxidation of a reduced protein but not isomerization of disulfides (Darby, N. J., and Creighton, T. E. (1995) Biochemistry 34, 11725-11735). To examine the structural basis for this oxidase and isomerase activity of PDI, shuffled domain mutants were generated using a method that should be generally applicable to multidomain proteins. Domains a and a' along with constructs ab, aa', aba', ab'a' display low disulfide isomerase activity, but all show significant reactivity with mammalian thioredoxin reductase, suggesting that the structure is not seriously compromised. The only domain order that retains significant isomerase activity has the b' domain coupled to the N terminus of the a' domain. This b'a'c has 38% of the isomerase activity of wild-type PDI, equivalent to the activity of full-length PDI with one of the active sites inactivated by mutation (Walker, K. W., Lyles, M. M., and Gilbert, H. F. (1996) Biochemistry 35, 1972-1980). Individual a and a' domains, despite their very low isomerase activities in vitro, support wild-type growth of a pdi1Delta Saccharomyces cerevisiae strain yeast. Thus, most of the PDI structure is dispensable for its essential function in yeast, and high-level isomerase activity appears not required for viability or rapid growth.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号