首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Secretin activates vagal primary afferent neurons in the rat: evidence from electrophysiological and immunohistochemical studies
Authors:Li Ying  Wu Xiaoyin  Yao Harry  Owyang Chung
Institution:Gastroenterology Research Unit, University of Michigan Health System, Ann Arbor, MI 48109, USA.
Abstract:In this study, we evaluated the vagal afferent response to secretin at physiological concentrations and localized the site of secretin's action on vagal afferent pathways in the rat. The discharge of sensory neurons supplying the gastrointestinal tract was recorded from nodose ganglia. Of 91 neurons activated by electrical vagal stimulation, 19 neurons showed an increase in firing rate in response to intestinal perfusion of 5-HT (from 1.5 +/- 0.2 to 25 +/- 4 impulses/20 s) but no response to intestinal distension. A close intra-arterial injection of secretin (2.5 and 5.0 pmol) elicited responses in 15 of these 19 neurons (from 1.5 +/- 0.2 impulses/20 s at basal to 21 +/- 4 and 43 +/- 5 impulses/20 s, respectively). Subdiaphragmatic vagotomy and perivagal application of capsaicin, but not supranodose vagotomy, completely abolished the secretin-elicited vagal nodose neuronal response. In a separate study, 9 tension receptor afferents among 91 neurons responded positively to intestinal distension but failed to respond to luminal 5-HT. These nine neurons also showed no response to administration of secretin. As expected, immunohistochemical studies showed that secretin administration significantly increased the number of Fos-positive neurons in vagal nodose ganglia. In conclusion, we demonstrated for the first time that vagal sensory neurons are activated by secretin at physiological concentrations. A subpopulation of secretin-sensitive vagal afferent fibers is located in the intestinal mucosa, many of which are responsive to luminal 5-HT.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号