首页 | 本学科首页   官方微博 | 高级检索  
   检索      


A simple model for proteins with interacting domains. Applications to scanning calorimetry data
Authors:J F Brandts  C Q Hu  L N Lin  M T Mos
Institution:Department of Chemistry, University of Massachusetts, Amherst 01003.
Abstract:A simple thermodynamic model is formulated for the purpose of interpreting scanning calorimetry data on proteins that have interacting domains. Interactions are quantified by inclusion of an interface free energy, delta GAB, in the thermodynamics of unfolding for multidomain proteins. The assumption is made that delta GAB goes to zero with the unfolding of either domain involved in pairwise interaction, so the interaction term appears to stabilize only the domain with the lower TM. Application of the model to calorimetric data leads to an estimate of -25,000 cal/mol for interactions between the regulatory and catalytic subunits of native aspartate transcarbamoylase and to a value of 0 for delta GAB between the transmembrane and cytoplasmic domains of band 3 of the human erythrocyte membrane. Estimates of changes in delta GAB are also obtained for mutant forms of yeast phosphoglycerate kinase that have been altered in the hinge region between amino-terminal and carboxy-terminal domains. The model is also applied to ligand binding to proteins having domains that communicate through pairwise interaction. It is shown that whenever the delta GAB term is ligand-dependent, then attachment of the ligand to the binding domain will be partially controlled by the other (regulatory) domain. This situation can sometimes be recognized and quantified when calorimetric scans are carried out at varying ligand concentrations. According to the model, the binding of MgATP to the carboxy-terminal domain of phosphoglycerate kinase is strongly stabilized (ca. 20% of the unitary free energy of binding) by participation of the amino-terminal domain, which acts to increase the binding constant 25-fold.(ABSTRACT TRUNCATED AT 250 WORDS)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号