首页 | 本学科首页   官方微博 | 高级检索  
   检索      


PIK3C3/VPS34 control by acetylation
Authors:Hua Su
Institution:Department of Biochemistry and Molecular Biology, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
Abstract:PIK3C3/VPS34 (phosphatidylinositol 3-kinase catalytic subunit type 3) converts phosphatidylinositol (PtdIns) to phosphatidylinositol-3-phosphate (PtdIns3P), sustaining macroautophagy/autophagy and endosomal transport. So far, facilitating the assembly of the PIK3C3/VPS34-BECN1-PIK3R4/VPS15/p150 core complex at distinct membranes is the only known way to activate PIK3C3/VPS34 in cells. We have recently revealed a novel mechanism that regulates PIK3C3/VPS34 activation; cellular PIK3C3/VPS34 is repressed under nutrient-rich conditions by EP300/p300-mediated acetylation. Following nutrient-deprivation that drops EP300 activity, PIK3C3/VPS34 is liberated by deacetylation. Intriguingly, while deacetylation of the N-terminal K29 residue accounts for core complex formation, deacetylation at the C-terminal K771 site determines the binding of PIK3C3/VPS34 to its substrate PtdIns. In vitro and in cell evidence shows that EP300-dependent acetylation and deacetylation is a switch for turning off/on PIK3C3/VPS34 in which deacetylation of K771 is required for its full activation. This PIK3C3/VPS34 activation mechanism is utilized not only by starvation-induced autophagy but also by autophagy without the involvement of AMPK, MTORC1 or ULK1. These findings suggest an alternative circuit in cells for PIK3C3/VPS34 activation, which is involved in membrane transformations in response to metabolic and nonmetabolic cues.
Keywords:acetylation  autophagy  endocytic transport  p300  VPS34
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号