首页 | 本学科首页   官方微博 | 高级检索  
     


A model-based parametric study of impact force during running
Authors:Zadpoor Amir Abbas  Nikooyan Ali Asadi  Arshi Ahmad Reza
Affiliation:Biorobotics and Virtual Reality Research Laboratory, Department of Biomedical Engineering, Amirkabir University of Technology, Tehran 15914, Iran. azadpoor@gmail.com
Abstract:This paper deals with the impact force during foot-ground impact activities such as the running. A previously developed model is used for this study. The model is a lumped-parameter one consisting of four masses connected to each other via linear springs and viscous dampers. A shoe-specific nonlinear function is used for representation of the ground reaction force. The authors have previously showed that the previous version of the model as well as its simulation is incorrect. This paper slightly modifies the previous model so as it is able to produce results in agreement with the experiments. Then, the modified model is simulated for two typical shoe types. A parametric study is also conducted. The parametric study concerns with the effects of masses, mass ratios, stiffness constants, and damping coefficients on the dynamics of the impact. It is shown that the impact forces increase as the rigid and wobbling masses increase. However, the increase in the impact forces is not the same for all the masses. It is found that the impact force increases as the touchdown velocities increase. Simulations imply that the variations of the damping coefficients result in larger variations of the impact force compared to the stiffness. The effect of the variation of gravity on the simulated impact force is also explored. It is concluded that both the first and the second peaks of the impact force are increased with gravity. An in-depth discussion is included to compare results of the current paper with results of other investigators.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号