首页 | 本学科首页   官方微博 | 高级检索  
     


Heating systems LCA: comparison of biomass-based appliances
Authors:Daniele Cespi  Fabrizio Passarini  Luca Ciacci  Ivano Vassura  Valentina Castellani  Elena Collina  Andrea Piazzalunga  Luciano Morselli
Affiliation:1. Department of Industrial Chemistry and Materials, University of Bologna, Viale del Risorgimento 4, 40136, Bologna, Italy
2. DISAT—Department of Environmetal and Territorial Science, University of Milano Bicocca, Piazza della Scienza, 1, 20126, Milan, Italy
Abstract:

Purpose

Biomass provides an attractive solution for residential heating systems based on renewable fuels, even though biomass-based domestic heating systems are recognized as significant particulate matter emitters; thus, a life cycle assessment (LCA) approach was used in the study to compare two different appliances: a wood stove and a pellet stove, both modeled according to the best available technologies definition.

Methods

System boundaries of each scenario refer to a cradle-to-grave approach, including production, use and disposal of the heating appliance, as well as the preparation of biomass feedstock. The assessment of environmental impacts was performed assuming 1 MJ of thermal energy as the reference flow, considering the categories of particulate matter formation, human toxicity, climate change, and fossil fuel depletion, according to the ReCiPe 1.07 method. Finally, the comparison was extended to certain innovative heating systems in order to qualitatively evaluate potential improvements in residential heating performances.

Results and discussion

The results show that the wood stove reaches the highest scores in the categories of particulate matter formation and negative effects for human toxicity, as a consequence of the stove’s lower combustion efficiency, which would lead to a preference for the pellet stove. However, when climate change affecting human health and the ecosystem, and fossil depletion are considered, the choice appears more uncertain due to the energy consumption from the pelletizing step. Alternative technologies (e.g., solar panels in combination with a gas boiler) show better scores related to fine particles emission reduction, even if a worsening in other categories is observed. The results were validated by a sensitivity analysis.

Conclusions

The study suggests that a LCA approach can support the choice of the best domestic heating system, helping to promote policy initiatives on a sound basis and to understand which are the main key levers to act for reducing the total environmental burdens of biomass-based heating appliances.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号