首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Hydroxyl radical activation of a Ca(2+)-sensitive nonselective cation channel involved in epithelial cell necrosis
Authors:Simon Felipe  Varela Diego  Eguiguren Ana Luisa  Díaz Laín F  Sala Francisco  Stutzin Andrés
Institution:Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, 838-0453 Independencia, Santiago, Chile.
Abstract:In a previous work the involvement of a fenamate-sensitive Ca2+-activated nonselective cation channel (NSCC) in free radical-induced rat liver cell necrosis was demonstrated (5). Therefore, we studied the effect of radical oxygen species and oxidizing agents on the gating behavior of a NSCC in a liver-derived epithelial cell line (HTC). Single-channel currents were recorded in HTC cells by the excised inside-out configuration of the patch-clamp technique. In this cell line, we characterize a 19-pS Ca2+-activated, ATP- and fenamate-sensitive NSCC nearly equally permeable to monovalent cations. In the presence of Fe2+, exposure of the intracellular side of NSCC to H2O2 increased their open probability (Po) by ~40% without affecting the unitary conductance. Desferrioxamine as well as the hydroxyl radical (·OH) scavenger MCI-186 inhibited the effect of H2O2, indicating that the increase in Po was mediated by ·OH. Exposure of the patch membrane to the oxidizing agent 5,5'-dithio-bis-2-nitrobenzoic acid (DTNB) had a similar effect to ·OH. The increase in Po induced by ·OH or DTNB was not reverted by preventing formation or by DTNB washout, respectively. However, the reducing agent dithiothreitol completely reversed the effects on Po of both ·OH and DTNB. A similar increase in Po was observed by applying the physiological oxidizing molecule GSSG. Moreover, GSSG-oxidized channels showed enhanced sensitivity to Ca2+. The effect of GSSG was fully reversed by GSH. These results suggest an intracellular site(s) of action of oxidizing agents on cysteine targets on the fenamate-sensitive NSCC protein implicated in epithelial cell necrosis. Ca2+-activated channels; radical oxygen species; oxidative stress
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《American journal of physiology》浏览原始摘要信息
点击此处可从《American journal of physiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号