首页 | 本学科首页   官方微博 | 高级检索  
     


Fine control of adenylate cyclase by the phosphoenolpyruvate:sugar phosphotransferase systems in Escherichia coli and Salmonella typhimurium.
Authors:B U Feucht   M H Saier   Jr
Abstract:Inhibition of cellular adenylate cyclase activity by sugar substrates of the phosphoenolpyruvate-dependent phosphotransferase system was reliant on the activities of the protein components of this enzyme system and on a gene designated crrA. In bacterial strains containing very low enzyme I activity, inhibition could be elicited by nanomolar concentrations of sugar. An antagonistic effect between methyl alpha-glucoside and phosphoenolpyruvate was observed in permeabilized Escherichia coli cells containing normal activities of the phosphotransferase system enzymes. In contrast, phosphoenolpyruvate could not overcome the inhibitory effect of this sugar in strains deficient for enzyme I or HPr. Although the in vivo sensitivity of adenylate cyclase to inhibition correlated with sensitivity of carbohydrate permease function to inhibition in most strains studied, a few mutant strains were isolated in which sensitivity of carbohydrate uptake to inhibition was lost and sensitivity of adenylate cyclase to regulation was retained. These results are consistent with the conclusions that adenylate cyclase and the carbohydrate permeases were regulated by a common mechanism involving phosphorylation of a cellular constituent by the phosphotransferase system, but that bacterial cells possess mechanisms for selectively uncoupling carbohydrate transport from regulation.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号