首页 | 本学科首页   官方微博 | 高级检索  
     


Stoichiometry of labeling of myosin's proteolytic fragments by a purine disulfide analog of adenosine triphosphate.
Authors:P D Wagner  R G Yount
Abstract:A site-specific analog of ATP, 6,6'-dithiobis (inosinyl imidodiphosphate (S2P-PNP), inactivates the ATPase activities of myosin's proteolytic fragments, heavy meromyosin (HMM) and subfragment one (SF1), by formation of mixed disulfides between the 6 position of the purine ring and certain key cysteines. The stoichiometry of the reaction was determined by quantitatively displacing the thiopurine nucleotides from the labeled enzymes with sodium[14-C]cyanide. The thiocyanatoenzyme formed regained 25 percent of the original activity showing that the cysteines modified were not essential for catalysis. The rate of uptake of label paralleled the rate of inactivation. HMM was completely inactivated when 4 mol of thiopurine nucleotide was bound. SF1 made by a papain digestion of myosin incorporarted 2 mol of thiopurine nucleotide when completely inactivated. Having adenylyl imidodiphosphate, areversible competitive inhibitor of myosin's ATPase, present during the inactivation of HMM by S2P-PNP demonstrated that only one cysteine per head needed to be blocked to inactivate the enzyme. Moreover, SF1 made by a trypsin digest of HMM was completely inactivated when only 1.1 mol of the thiopurine nucleotide bound again indicating that blocking only a single cysteine per head was sufficient to cause inactivation. This sulfhydryl is thought to be at an ATP binding site distinct from the ATPase site. The properties of this second ATP binding site are consistent with it being an ATP regulatory site.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号