首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Identification,cloning, and characterization of a multicomponent biphenyl dioxygenase from <Emphasis Type="Italic">Sphingobium yanoikuyae</Emphasis> B1
Authors:Sinéad M Ní Chadhain  Elizabeth M Moritz  Eungbin Kim  Gerben J Zylstra
Institution:(1) Biotechnology Center for Agriculture and the Environment, Rutgers, The State University of New Jersey, 59 Dudley Road, New Brunswick, NJ 08901-8520, USA;(2) Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA;(3) Yonsei University, Seoul, Republic of Korea;(4) Biotechnology Center for Agriculture and the Environment, Rutgers University, 59 Dudley Road, New Brunswick, NJ 08901-8520, USA
Abstract:Sphingobium yanoikuyae B1 utilizes both polycyclic aromatic hydrocarbons (biphenyl, naphthalene, and phenanthrene) and monocyclic aromatic hydrocarbons (toluene, m- and p-xylene) as its sole source of carbon and energy for growth. The majority of the genes for these intertwined monocyclic and polycyclic aromatic pathways are grouped together on a 39 kb fragment of chromosomal DNA. However, this gene cluster is missing several genes encoding essential enzymatic steps in the aromatic degradation pathway, most notably the genes encoding the oxygenase component of the initial polycyclic aromatic hydrocarbon (PAH) dioxygenase. Transposon mutagenesis of strain B1 yielded a mutant blocked in the initial oxidation of PAHs. The transposon insertion point was sequenced and a partial gene sequence encoding an oxygenase component of a putative PAH dioxygenase identified. A cosmid clone from a genomic library of S. yanoikuyae B1 was identified which contains the complete putative PAH oxygenase gene sequence. Separate clones expressing the genes encoding the electron transport components (ferredoxin and reductase) and the PAH dioxygenase were constructed. Incubation of cells expressing the dioxygenase enzyme system with biphenyl or naphthalene resulted in production of the corresponding cis-dihydrodiol confirming PAH dioxygenase activity. This demonstrates that a single multicomponent dioxygenase enzyme is involved in the initial oxidation of both biphenyl and naphthalene in S. yanoikuyae B1.
Keywords:Sphingobium            Polycyclic  Biodegradation  Dioxygenase  Biphenyl  Naphthalene  Phenanthrene
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号