Patterns of neurogenesis and amplitude of Reelin expression are essential for making a mammalian-type cortex |
| |
Authors: | Nomura Tadashi Takahashi Masanori Hara Yoshinobu Osumi Noriko |
| |
Affiliation: | Division of Developmental Neuroscience, Center for Translational and Advanced Animal Research (CTTAR), Tohoku University School of Medicine, Sendai, Japan. |
| |
Abstract: | The mammalian neocortex is characterized as a six-layered laminar structure, in which distinct types of pyramidal neurons are distributed coordinately during embryogenesis. In contrast, no other vertebrate class possesses a brain region that is strictly analogous to the neocortical structure. Although it is widely accepted that the pallium, a dorsal forebrain region, is specified in all vertebrate species, little is known of the differential mechanisms underlying laminated or non-laminated structures in the pallium. Here we show that differences in patterns of neuronal specification and migration provide the pallial architectonic diversity. We compared the neurogenesis in mammalian and avian pallium, focusing on subtype-specific gene expression, and found that the avian pallium generates distinct types of neurons in a spatially restricted manner. Furthermore, expression of Reelin gene is hardly detected in the developing avian pallium, and an experimental increase in Reelin-positive cells in the avian pallium modified radial fiber organization, which resulted in dramatic changes in the morphology of migrating neurons. Our results demonstrate that distinct mechanisms govern the patterns of neuronal specification in mammalian and avian pallial development, and that Reelin-dependent neuronal migration plays a critical role in mammalian type corticogenesis. These lines of evidence shed light on the developmental programs underlying the evolution of the mammalian specific laminated cortex. |
| |
Keywords: | |
本文献已被 PubMed 等数据库收录! |
|