Abstract: | Fourteen oligomycin-resistant LM(TK-) clones were isolated following the mutagenesis of minicells. In the absence of oligomycin, the mutants grew with population doubling times similar to that of the wild type (1 day). In 3 or 5 microgram oligomycin/ml the doubling times of the mutants were 1.2-2.5 days. Both stable and unstable classes were represented among the oligomycin-resistant mutants. Mitochondrial ATPase activities of the mutants were 1.3-1130 times more resistant to oligomycin than the wild type. The mitochondrial ATPase of OLI 14 was found to be bound firmly to the mitochondrial membrane, showed no alteration in the pH optimum compared to wild-type, and exhibited increased resistance to DCCD and venturicidin. These results are consistent with the conclusion that oligomycin resistance in these mutants results from altered mitochondrial ATPase. |