首页 | 本学科首页   官方微博 | 高级检索  
     


Use of polarized light microscopy in porcine reproductive technologies
Authors:Caamaño J N  Maside C  Gil M A  Muñoz M  Cuello C  Díez C  Sánchez-Osorio J R  Martín D  Gomis J  Vazquez J M  Roca J  Carrocera S  Martinez E A  Gómez E
Affiliation:a Genética y Reproducción Animal, Centro de Biotecnología Animal, SERIDA, Deva 33394, Gijón, Principado de Asturias, Spain
b Department of Animal Medicine and Surgery, Faculty of Veterinary Medicine, University of Murcia, E-30071 Murcia, Spain
Abstract:The meiotic spindle in the oocyte is composed of microtubules and plays an important role during chromosome alignment and separation at meiosis. Polarized light microscopy (PLM) could be useful for a non-invasive evaluation of the meiotic spindle and may allow removal of nuclear structures without fluorochrome staining and ultraviolet exposure. In this study, PLM was used to assess its potential application in porcine reproductive technologies. The objectives of the present study were to assess the efficiency of PLM to detect microtubule-polymerized protein in in vitro-matured porcine oocytes; to examine its effects on the oocyte developmental competence; to select oocytes based on the presence of the meiotic spindle detected by PLM; and to assess the efficiency oocyte enucleation assisted with PLM. In the first experiment, the presence of microtubule-polymerized protein was assessed and confirmed in oocytes (n = 117) by immunostaining and chromatin detection. In the second experiment, oocytes (n = 160) were exposed or not (controls) to PLM for 10 minutes, and then parthenogenetically activated and cultured in vitro. In the third experiment, development competence of oocytes with a positive or negative signal to PLM was analyzed after in vitro fertilization. Finally, oocytes (n = 54) were enucleated using PLM as a tool to remove the meiotic spindle. A positive PLM signal was detected in 98.2 % of the oocytes, which strongly correlated (r = 1; p < 0.0001) with the presence of microtubule-polymerized protein as confirmed by immunostaining. Oocytes exposed to PLM did not differ significantly from controls on cleavage, total blastocyst, expanded blastocyst rates and total cell numbers. The percentage of oocytes at the MII stage and blastocyst formation rate in the negative PLM group significantly differed from control and PLM positive groups. Overall efficiency of spindle removal using the PLM-Oosight system was 92.6%. These results suggest that polarized light microscopy is an efficient system to detect microtubule-polymerized protein in in vitro-matured porcine oocytes and does not exert detrimental effects on porcine oocyte developmental competence. Selecting oocytes by the presence of a PLM signal provides limited improvement on IVF results. Finally, PLM appears as an efficient method to enucleate porcine oocytes.
Keywords:Polarized light microscopy   Meiotic spindle   Oocytes   Porcine
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号