首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Increased biological potency of hexafluorinated analogs of 1,25-dihydroxyvitamin D3 on bovine parathyroid cells
Authors:Yasuo Imanishi  Masaaki Inaba  Hitoshi Seki  Hidenori Koyama  Yoshiki Nishizawa  Hirotoshi Morii  Shuzo Otani  
Abstract:1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) is known to be involved in regulating the proliferation of parathyroid cells and PTH synthesis through reactions involving its nuclear receptor. We evaluated the effects of 1,25-(OH)2D3 and its hexafluorinated analog, 26,26,26,27,27,27-hexafluoro-1,25-dihydroxyvitamin D3 (26,27-F6-1,25-(OH)2D3), on parathyroid cells. The 1,25-(OH)2D3 and 26,27-F6-1,25-(OH)2D3 each inhibited 3H]thymidine incorporation and ornithine decarboxylase (ODC) activity, which is important in cell proliferation, in primary cultured bovine parathyroid cells. The inhibitory effect of 26,27-F6-1,25-(OH)2D3 on PTH secretion from parathyroid cells was significantly more potent than that of 1,25-(OH)2D 3 between 10−11 M and 10−8 M. Study of 26,27-F6-1,25-(OH)2D3 metabolism in parathyroid cells in vitro elucidated its slower degradation than that of 1,25-(OH)2D3. After 48 h of incubation with 1β-3H]26,27-F6-1,25-(OH)2D3, two HPLC peaks, one for 1β-3H]26,27-F6-1,25-(OH)2D3, and a second larger peak for 1β-3H]26,27-F6-1,23(S),25-(OH)3D3, were detected. No metabolites were detected after the same period of incubation with 1,25-(OH)226,27-3H]D3. We observed that 26,27-F6-1,23(S),25-(OH)3D3 was as potent as 1,25-(OH)2D3 in inhibiting the proliferation of parathyroid cells.Data suggest that the greater biological activity of 26,27-F6-1,25-(OH)2D3 is explained by its slower metabolisms and by the retention of the biological potency of 26,27-F6-1,25-(OH)2D3 even after 23(S)-hydroxylation.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号