首页 | 本学科首页   官方微博 | 高级检索  
   检索      


68Ga labeled Erlotinib: A novel PET probe for imaging EGFR over-expressing tumors
Authors:Akanksha Jain  Mythili Kameswaran  Usha Pandey  Kumar Prabhash  Haladhar Dev Sarma  Ashutosh Dash
Institution:1. Radiopharmaceuticals Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai 400 085, India;2. Tata Memorial Hospital, Parel, Mumbai 400 012, India;3. Radiation Biology & Health Sciences Division, Bhabha Atomic Research Centre (BARC), Trombay, Mumbai 400 085, India;4. Homi Bhabha National Institute, Anushaktinagar, Mumbai 400 094, India
Abstract:Molecular imaging using radiolabeled Tyrosine Kinase Inhibitors (TKI) is a promising strategy for detection and staging of EGFR-positive cancers. A novel analogue of one such TKI, Erlotinib has been developed for PET imaging by derivatizing the parent Erlotinib molecule for conjugation with the bifunctional chelator p-SCN-Bn-NOTA towards radiolabeling with 68Ga. NOTA-Erlotinib conjugate was synthesized and characterized by NMR and ESI-MS techniques. The conjugate was radiolabeled with 68Ga in 95 ± 2% yield, as evidenced by HPLC characterization. The log P value of 68Ga-NOTA-Erlotinib was – (0.6 ± 0.1). The 68Ga-NOTA-Erlotinib conjugate was characterized using its natGa-NOTA-Erlotinib surrogate. Cell viability studies showed that the NOTA-Erlotinib conjugate retained the biological efficacy of the parent Erlotinib molecule. Further, 68Ga-NOTA-Erlotinib exhibited an uptake of 9.8 ± 0.4% in A431 cells which was inhibited by 55.1 ± 0.2% on addition of cold Erlotinib (10 µg) confirming the specificity of the radioconjugate for EGFR expressing cells. In the biodistribution studies carried out in tumor bearing SCID mice, 68Ga-NOTA-Erlotinib conjugate showed moderate tumor accumulation (1.5 ± 0.1% ID/g at 30 min p.i.; 0.7 ± 0.2% ID/g at 1 h p.i.). Hepatobiliary clearance of the radioconjugate was observed. The 68Ga-NOTA-Erlotinib conjugate was found to have high in vivo stability as determined by the metabolite analysis study using urine sample of the Swiss mice injected with the preparation. The overall properties of 68Ga-NOTA-Erlotinib are promising and merit further exploration. To the best of our knowledge, this is the first report on the design of a 68Ga labeled Erlotinib for PET imaging of EGFR and opens avenues for the successful development of 68Ga labeled TKI for imaging of EGFR over-expressing tumors.
Keywords:Erlotinib  Tyrosine Kinase Inhibitors  EGFR  PET imaging  Corresponding author  
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号