首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Effects of ammonium on energy metabolism and intracellular pH in guinea pig cerebral cortex studied by P and H nuclear magnetic resonance spectroscopy
Authors:Risto A Kauppinen  Stephen R Williams  Keith J Brooks and Herman S Bachelard
Institution:

1 Division of Biophysics, Hunterian Institute, The Royal College of Surgeons of England, London WC2A, U.K.

2 Department of Biochemistry, UMDS (St Thomas's Hospital Medical School), London SE1, U.K.

Abstract:31P and 1H nuclear magnetic resonance spectroscopy were used to study the effects of ammonium on high-energy phosphates, intracellular pH and lactate in guinea pig cerebral cortex in vitro. In the presence of glucose, 1 mM ammonium caused an intracellular acidification by 0.2–0.3 pH units without a change in phosphocreatine/ATP (PCr/ATP) ratio, lactate concentration or oxygen uptake. At concentrations of 5 mM or greater, NH4+ caused an energy failure and an increase in tissue lactate, together with a drop in intracellular pH. A split in the inorganic phosphate resonance was observed during the exposure to both 20 mM NH4+ and 20 mM K+ indicating heterogeneity of the volume-averaged intracellular pH. Cortical brain slices incubated in the presence of 10 mM lactate maintained PCr/ATP ratio and intracellular pH at similar levels as in the presence of glucose, but 1 mM NH4+ caused a fall in PCr/ATP. Both 20 mM NH4+ and 20 mM K+ stimulated oxygen uptake of the preparation with glucose or lactate as substrate. These results show that the only acute effect of 1 mM NH4+ in the presence of glucose is an intracellular acidification whereas energetic consequences develop at high levels of this neurotoxic agent.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号