首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Signaling pathways bridging microbial-triggered inflammation and cancer
Authors:Maulilio John Kipanyula  Paul Faustin Seke Etet  Lorella Vecchio  Mohammed Farahna  Elias Nchiwan Nukenine  Armel Hervé Nwabo Kamdje
Institution:1. Department of Veterinary Anatomy, Sokoine University of Agriculture, P.O. Box 3016, Chuo Kikuu, Morogoro, Tanzania;2. Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah, 51452 Al-Qaseem, Saudi Arabia;3. Laboratory of Cytometry, Institute of Molecular Genetics, CNR, University of Pavia, 27100 Pavia, Italy;4. Department of Biomedical Sciences, University of Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon;5. Biomedical Research Center, University of British Columbia, 2222 Health Science Mall, Vancouver BC, Canada, V6T 1Z3
Abstract:Microbial-triggered inflammation protects against pathogens and yet can paradoxically cause considerable secondary damage to host tissues that can result in tissue fibrosis and carcinogenesis, if persistent. In addition to classical pathogens, gut microbiota bacteria, i.e. a group of mutualistic microorganisms permanently inhabiting the gastrointestinal tract and which plays a key role in digestion, immunity, and cancer prevention, can induce inflammation-associated cancer following the alterations of their microenvironment. Emerging experimental evidence indicates that microbiota members like Escherichia coli and several other genotoxic and mutagenic pathogens can cause DNA damage in various cell types. In addition, the inflammatory response induced by chronic infections with pathogens like the microbiota members Helicobacter spp., which have been associated with liver, colorectal, cervical cancers and lymphoma, for instance, can also trigger carcinogenic processes. A microenvironment including active immune cells releasing high amounts of inflammatory signaling molecules can favor the carcinogenic transformation of host cells. Pivotal molecules released during immune response such as the macrophage migration inhibitory factor (MMIF) and the reactive oxygen and nitrogen species' products superoxide and peroxynitrite, can further damage DNA and cause the accumulation of oncogenic mutations, whereas pro-inflammatory cytokines, adhesion molecules, and growth factors may create a microenvironment promoting neoplastic cell survival and proliferation. Recent findings on the implication of inflammatory signaling pathways in microbial-triggered carcinogenesis as well as the possible role of microbiota modulation in cancer prevention are herein summarized and discussed.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号