首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nicotinic acetylcholine receptor antagonists alter the function and expression of serine racemase in PC-12 and 1321N1 cells
Authors:Nagendra S Singh  Rajib K Paul  Anuradha Ramamoorthy  Marc C Torjman  Ruin Moaddel  Michel Bernier  Irving W Wainer
Institution:1. Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224, USA;2. Biostatistical Group, Cooper Medical School of Rowan University, Camden, NJ 08103, USA
Abstract:Western blot analysis demonstrated that PC-12 cells express monomeric and dimeric forms of serine racemase (m-SR, d-SR) and that 1321N1 cells express m-SR. Quantitative RT-PCR and functional studies demonstrated that PC-12 cells express homomeric and heteromeric forms of nicotinic acetylcholine receptors (nAChR) while 1321N1 cells primarily express the α7-nAChR subtype. The effect of nAChR agonists and antagonists on SR activity and expression was examined by following concentration-dependent changes in intracellular d-Ser levels and SR protein expression. Incubation with (S)-nicotine increased d-Ser levels, which were attenuated by the α7-nAChR antagonist methyllycaconitine (MLA). Treatment of PC-12 cells with mecamylamine (MEC) produced a bimodal reduction of d-Ser reflecting MEC inhibition of homomeric and heteromeric nAChRs, while a unimodal curve was observed with 1321N1 cells, reflecting predominant expression of α7-nAChR. The nAChR subtype selectivity was probed using α7-nAChR selective inhibitors MLA and (R,S)-dehydronorketamine and α3β4-nAChR specific inhibitor AT-1001. The compounds reduced d-Ser in PC-12 cells, but only MLA and (R,S)-dehydronorketamine were effective in 1321N1 cells. Incubation of PC-12 and 1321N1 cells with (S)-nicotine, MEC and AT-1001 did not affect m-SR or d-SR expression, while MLA and (R,S)-dehydronorketamine increased m-SR expression but not SR mRNA levels. Treatment with cycloheximide indicated that increased m-SR was due to de novo protein synthesis associated with phospho-active forms of ERK1/2, MARCKS, Akt and rapamycin-sensitive mTOR. This effect was attenuated by treatment with the pharmacological inhibitors U0126, LY294002 and rapamycin, which selectively block the activation of ERK1/2, Akt and mTOR, respectively, and siRNAs directed against ERK1/2, Akt and mTOR. We propose that nAChR-associated changes in Ca2 + flux affect SR activity, but not expression, and that MLA and (R,S)-dehydronorketamine bind to allosteric sites on the α7-nAChR and promote multiple signaling cascades that converge at mTOR to increase m-SR levels.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号