首页 | 本学科首页   官方微博 | 高级检索  
     


Reduced neuronal expression of synaptic transmission modulator HNK-1/neural cell adhesion molecule as a potential consequence of amyloid beta-mediated oxidative stress: a proteomic approach
Authors:Thomas Stefani N  Soreghan Brian A  Nistor Mihaela  Sarsoza Floyd  Head Elizabeth  Yang Austin J
Affiliation:Department of Pharmaceutical Sciences, University of Southern California, Los Angeles, CA 90089, USA.
Abstract:Abstract Oxidative stress imparted by reactive oxygen species (ROS) is implicated in the pathogenesis of Alzheimer's disease (AD). Given that amyloid beta (Abeta) itself generates ROS that can directly damage proteins, elucidating the functional consequences of protein oxidation can enhance our understanding of the process of Abeta-mediated neurodegeneration. In this study, we employed a biocytin hydrazide/streptavidin affinity purification methodology followed by two-dimensional liquid chromatography tandem mass spectrometry coupled with SEQUEST bioinformatics technology, to identify the targets of Abeta-induced oxidative stress in cultured primary cortical mouse neurons. The Golgi-resident enzyme glucuronyltransferase (GlcAT-P) was a carbonylated target that we investigated further owing to its involvement in the biosynthesis of HNK-1, a carbohydrate epitope expressed on cell adhesion molecules and implicated in modulating the effectiveness of synaptic transmission in the brain. We found that increasing amounts of Abeta, added exogenously to the culture media of primary cortical neurons, significantly decreased HNK-1 expression. Moreover, in vivo, HNK-1 immunoreactivity was decreased in brain tissue of a transgenic mouse model of AD. We conclude that a potential consequence of Abeta-mediated oxidation of GlcAT-P is impairment of its enzymatic function, thereby disrupting HNK-1 biosynthesis and possibly adversely affecting synaptic plasticity. Considering that AD is partly characterized by progressive memory impairment and disordered cognitive function, the data from our in vitro studies can be reconciled with results from in vivo studies that have demonstrated that HNK-1 modulates synaptic plasticity and is critically involved in memory consolidation.
Keywords:amyloid‐β  glucuronyltransferase  Human Natural Killer (HNK‐1)   liquid chromatography tandem mass spectrometry  oxidative stress
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号