首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Probing the role of crystallographically defined/predicted hinge-bending regions in the substrate-induced global conformational transition and catalytic activation of human phenylalanine hydroxylase by single-site mutagenesis
Authors:Stokka Anne Jorunn  Carvalho Raquel Negrão  Barroso João Filipe  Flatmark Torgeir
Institution:Section of Biochemistry and Molecular Biology, Department of Biomedicine, University of Bergen, Jonas Lies vei 91, N-5009 Bergen, Norway.
Abstract:Phenylalanine hydroxylase (PAH) is generally considered to undergo a large and reversible conformational transition upon l-Phe binding, which is closely linked to the substrate-induced catalytic activation of this hysteretic enzyme. Recently, several crystallographically solvent-exposed hinge-bending regions including residues 31-34, 111-117, 218-226, and 425-429 have been defined/predicted to be involved in the intra-protomer propagation of the substrate-triggered molecular motions generated at the active site. On this basis, single-site mutagenesis of key residues in these regions of the human PAH tetramer was performed in the present study, and their functional impact was measured by steady-state kinetics and the global conformational transition as assessed by surface plasmon resonance and intrinsic tryptophan fluorescence spectroscopy. A strong correlation (r(2) = 0.93-0.96) was observed between the l-Phe-induced global conformational transition and V(max) values for wild-type human PAH and the mutant forms K113P, N223D, N426D, and N32D, in contrast to the substitution T427P, which resulted in a tetrameric form with no kinetic cooperativity. Furthermore, the flexible intra-domain linker region (residues 31-34) seems to be involved in a more local conformational change, and the biochemical/biophysical properties of the G33A/G33V mutant forms support a key function of this residue in the positioning of the autoregulatory sequence (residues 1-30) and thus in the regulation of the solvent and substrate access to the active site. The mutant forms revealed a variably reduced global conformational stability compared with wild-type human PAH, as measured by thermal denaturation and limited proteolysis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号