Purification and characterization of the bacteriophage T7 gene 2.5 protein. A single-stranded DNA-binding protein. |
| |
Authors: | Y T Kim S Tabor C Bortner J D Griffith C C Richardson |
| |
Affiliation: | Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, Massachusetts 02115. |
| |
Abstract: | Bacteriophage T7 gene 2.5 protein has been purified to homogeneity from cells overexpressing its gene. Native gene 2.5 protein consists of a dimer of two identical subunits of molecular weight 25,562. Gene 2.5 protein binds specifically to single-stranded DNA with a stoichiometry of approximately 7 nucleotides bound per monomer of gene 2.5 protein; binding appears to be noncooperative. Electron microscopic analysis shows that gene 2.5 protein is able to disrupt the secondary structure of single-stranded DNA. The single-stranded DNA is extended into a chain of gene 2.5 protein dimers bound along the DNA. In fluorescence quenching and nitrocellulose filter binding assays, the binding constants of gene 2.5 protein to single-stranded DNA are 1.2 x 10(6) M-1 and 3.8 x 10(6) M-1, respectively. Escherichia coli single-stranded DNA-binding protein and phage T4 gene 32 protein bind to single-stranded DNA more tightly by a factor of 25. Fluorescence spectroscopy suggests that tyrosine residue(s), but not tryptophan residues, on gene 2.5 protein interacts with single-stranded DNA. |
| |
Keywords: | |
|
|