首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Major quantitative trait loci for seminal root morphology of wheat seedlings
Authors:Yongzhe Ren  Xue He  Dongcheng Liu  Jingjuan Li  Xueqiang Zhao  Bin Li  Yiping Tong  Aimin Zhang  Zhensheng Li
Institution:1. The State Key Laboratory for Plant Cell and Chromosome Engineering, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
2. Department of Life Science, Shangqiu Normal University, Shangqiu, 476000, Henan Province, China
Abstract:Vigorous early root growth at seedling stage has been shown to be important for efficient acquisition of nutrients in wheat (Triticum aestivum L.). Identifying quantitative trait loci (QTL) for early root growth can facilitate the selection of wheat varieties with efficient nutrient use. A recombinant inbred line population derived from two Chinese wheat varieties, Xiaoyan 54 and Jing 411, was grown hydroponically at seedling stage. The maximum root length (MRL), primary root length (PRL), lateral root length (LRL), total root length (TRL), and root tip number (RN) of seminal roots were measured using the WinRHIZO Root Analyser. Numerous QTL for the investigated root traits were detected with QTL numbers varying from two to six, depending on the traits. Among them, two loci had major effects on primary (MRL and PRL) and lateral (LRL and RN) root parameters, respectively. The QTL (namely qTaLRO-B1) between Xgwm210 and Xbarc1138.2 on chromosome 2B explained 68.0 and 59.0% of phenotypic variations in MRL and PRL, respectively; the major QTL between Xgwm570 and Xgwm169.2 on chromosome 6A explained 30.5 and 24.5% of phenotypic variations in LRL and RN, respectively. These two major loci showed linkage with previous reported QTL for yield component and nutrient uptake. Detailed analysis of qTaLRO-B1 indicated that the positive allele of qTaLRO-B1 showed dominance over the negative allele, which showed impairment in primary root elongation. The existence of major QTL for root trait and their linkage with agronomic traits and nutrient uptake will facilitate the design of root morphology for better yield performance and efficient nutrient use.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号