首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Isolation of photorespiratory mutants from Lotus japonicus deficient in glutamine synthetase
Authors:Orea Alicia  Pajuelo Purificación  Pajuelo Eloísa  Quidiello Concepción  Romero José M  Márquez Antonio J
Institution:Departamento de Bioquímica Vegetal y Biología Molecular, Facultad de Química, Universidad de Sevilla, Apdo. 553, E-41080 Sevilla, Spain; Instituto de Bioquímica Vegetal y Fotosíntesis, Centro de Investigaciones Científicas Isla de la Cartuja, Avda. Americo Vespucio s/n, E-41092, Sevilla, Spain
Abstract:A mutagenesis programme using ethyl methanesulphonate (EMS) was carried out on Lotus japonicus (Regel) Larsen cv. Gifu in order to isolate photorespiratory mutants in this model legume. These mutants were able to grow in a CO2-enriched atmosphere 0.7% (v/v) CO2] but showed stress symptoms when transferred to air. Among them, three mutants displayed low levels of glutamine synthetase (GS; EC 6.3.1.2) activity in leaves. The mutants accumulated ammonium in leaves upon transfer from 0.7% (v/v) CO2 to air. F1 plants of back crosses to wild type were viable in air and F2 populations segregated 3 : 1 (viable in air : air-sensitive) indicative of a single Mendelian recessive trait. Complementation tests showed that the three mutants obtained were allelic. Chromatography on DEAE-Sephacel used to separate the cytosolic and plastidic GS isoenzymes together with immunological data showed that: (1) mutants were specifically affected in the plastidic GS isoform, and (2) in L. japonicus the plastidic GS isoform eluted at lower ionic strength than the cytosolic isoform, contrary to what happens in most plants. The plastidic GS isoform present in roots of wild type L. japonicus was also absent in roots of the mutants, indicating that this plastidic isoform from roots was encoded by the same gene than the GS isoform expressed in leaf tissue. Viability of mutant plants in high-CO2 conditions indicates that plastidic GS is not essentially required for primary ammonium assimilation. Nevertheless, mutant plants did not grow as well as wild type plants in high-CO2 conditions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号