首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Nitrogen isotopic fractionation and 18O exchange in relation to the mechanism of denitrification of nitrite by Pseudomonas stutzeri
Authors:G Shearer  D H Kohl
Institution:Biology Department, Washington University, St. Louis, Missouri 63130.
Abstract:Two types of mechanisms for the enzymatic reduction of NO2- to N2O have been proposed. In one, two NO2- ions are reduced in parallel, with the nitrogen-nitrogen bond formed from reduced intermediates. In the second, the two NO2- ions enter the reaction sequentially, with the nitrogen of at least one of the two having a valence of 3+ when the nitrogen-nitrogen bond is formed. Our objective was to distinguish between these two types of mechanism. Toward that end, the exchange of 18O from H2O to NO2- and the overall nitrogen isotopic fractionation factor (beta obs) were measured. The rate of exchange of oxygen from H2O to NO2-, resulting from a protonation-dehydration step preceding reductive events in both mechanisms, was less than 10% of the rate of denitrification at both low and high NO2-]. The value of beta obs was 1.010 +/- 0.001 and 1.020 +/- 0.001 at low and high NO2-], respectively. Expressions for beta obs, as a function of the measured rate of entry of oxygen from H2O into NO2-, were derived for both types of mechanism. The measured dependence of beta obs on substrate concentration, as constrained by the 18O exchange data, is inconsistent with the first type of mechanism, but consistent with the second type. Thus, by combining nitrogen isotopic fractionation and 18O exchange data, we rule out any mechanism in Pseudomonas stutzeri in which NO2- ions are reduced in parallel, with the nitrogen-nitrogen bond being formed from reduced intermediates.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号