首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Formation of a new buried charge drives a large-amplitude protein quake in photoreceptor activation
Authors:Xie A  Kelemen L  Hendriks J  White B J  Hellingwerf K J  Hoff W D
Institution:Department of Physics, Oklahoma State University, 145 Physical Sciences II, Stillwater, OK 74078, USA. aihua@westlake.phy.okstate.edu
Abstract:Photoactive yellow protein (PYP) is a eubacterial photoreceptor and a structural prototype of the PAS domain superfamily of receptor and regulatory proteins. We investigate the activation mechanism of PYP using time-resolved Fourier transform infrared (FTIR) spectroscopy. Our data provide structural, kinetic, and energetic evidence that the putative signaling state of PYP is formed during a large-amplitude protein quake that is driven by the formation of a new buried charge, COO(-) of the conserved Glu46, in a highly hydrophobic pocket at the active site. A protein quake is a process consisting of global conformational changes that are triggered and driven by a local structural "fault". We show that large, global structural changes take place after Glu46 ionization via intramolecular proton transfer to the anionic p-coumarate chromophore, and are suppressed by the absence of COO(-) formation in the E46Q mutant. Our results demonstrate the significance of buried charge formation in photoreceptor activation. This mechanism may serve as one of the general themes in activation of a range of receptor proteins. In addition, we report the results of time-resolved FTIR spectroscopy of PYP crystals. The direct comparison of time-resolved FTIR spectroscopic data of PYP in aqueous solution and in crystals reveals that the structure of the putative signaling state is not developed in P6(3) crystals. Therefore, when the structural developments during the functional process of a protein are experimentally determined to be very different in crystals and solutions, one must be cautious in drawing conclusions regarding the functional mechanism of proteins based on time-resolved X-ray crystallography.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号