首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Modulation of the Ca2+ sensitivity of airway smooth muscle cells in murine lung slices
Authors:Bai Yan  Sanderson Michael J
Institution:Department of Physiology, University of Massachusetts Medical School, Worcester, 01655, USA.
Abstract:To investigate the phenomenon of Ca(2+) sensitization, we developed a new intact airway and arteriole smooth muscle cell (SMC) "model" by treating murine lung slices with ryanodine-receptor antagonist, ryanodine (50 microM), and caffeine (20 mM). A sustained elevation in intracellular Ca(2+) concentration (Ca(2+)](i)) was induced in both SMC types by the ryanodine-caffeine treatment due to the depletion of internal Ca(2+) stores and the stimulation of a persistent influx of Ca(2+). Arterioles responded to this sustained increase in Ca(2+)](i) with a sustained contraction. By contrast, airways responded to sustained high Ca(2+)](i) with a transient contraction followed by relaxation. Subsequent exposure to methacholine (MCh) induced a sustained concentration-dependent contraction of the airway without a change in the Ca(2+)](i). During sustained MCh-induced contraction, Y-27632 (a Rho-kinase inhibitor) and GF-109203X (a protein kinase C inhibitor) induced a concentration-dependent relaxation without changing the Ca(2+)](i). The cAMP-elevating agents, forskolin (an adenylyl cyclase activator), IBMX (a phosphodiesterase inhibitor), and caffeine (also acting as a phosphodiesterase inhibitor), exerted similar relaxing effects. These results indicate that 1) ryanodine-caffeine treatment is a valuable tool for investigating the contractile mechanisms of SMCs while avoiding nonspecific effects due to cell permeabilization, 2) in the absence of agonist, sustained high Ca(2+)](i) has a differential time-dependent effect on the Ca(2+) sensitivity of airway and arteriole SMCs, 3) MCh facilitates the contraction of airway SMCs by inducing Ca(2+) sensitization via the activation of Rho-kinase and protein kinase C, and 4) cAMP-elevating agents contribute to the relaxation of airway SMCs through Ca(2+) desensitization.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号