首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Characterization of the rat Na+/nucleoside cotransporter 2 and transport of nucleoside-derived drugs using electrophysiological methods
Authors:Larráyoz Ignacio M  Fernández-Nistal Alonso  Garcés Aitziber  Gorraitz Edurne  Lostao M Pilar
Institution:Department of Physiology and Nutrition, University of Navarra, Pamplona, Spain.
Abstract:The Na+-dependent nucleoside transporter 2 (CNT2) mediates active transport of purine nucleosides and uridine as well as therapeutic nucleoside analogs. We used the two-electrode voltage-clamp technique to investigate rat CNT2 (rCNT2) transport mechanism and study the interaction of nucleoside-derived drugs with the transporter expressed in Xenopus laevis oocytes. The kinetic parameters for sodium, natural nucleosides, and nucleoside derivatives were obtained as a function of membrane potential. For natural substrates, apparent affinity (K0.5) was in the low micromolar range (12–34) and was voltage independent for hyperpolarizing membrane potentials, whereas maximal current (Imax) was voltage dependent. Uridine and 2'-deoxyuridine analogs modified at the 5-position were substrates of rCNT2. Lack of the 2'-hydroxyl group decreased affinity but increased Imax. Increase in the size and decrease in the electronegativity of the residue at the 5-position affected the interaction with the transporter by decreasing both affinity and Imax. Fludarabine and formycin B were also transported with higher Imax than uridine and moderate affinity (102 ± 10 and 66 ± 6 µM, respectively). Analysis of the pre-steady-state currents revealed a half-maximal activation voltage of about –39 mV and a valence of about –0.8. K0.5 for Na+ was 2.3 mM at –50 mV and decreased at hyperpolarizing membrane potentials. The Hill coefficient was 1 at all voltages. Direct measurements of radiolabeled nucleoside fluxes with the charge associated showed a ratio of two positive inward charges per nucleoside, suggesting a stoichiometry of two Na+ per nucleoside. This discrepancy in the number of Na+ molecules that bind rCNT2 may indicate a low degree of cooperativity between the Na+ binding sites. two-electrode voltage clamp; concentrative nucleoside transport; presteady-state currents
Keywords:
本文献已被 PubMed 等数据库收录!
点击此处可从《American journal of physiology》浏览原始摘要信息
点击此处可从《American journal of physiology》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号