首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Kainate-Evoked Release of Adenosine from the Hippocampus of the Anaesthetised Rat: Possible Involvement of Free Radicals
Authors:H V Carswell  D I Graham  T W Stone
Institution:Division of Neuroscience and Biomedical Systems and; Department of Neuropathology, University of Glasgow, Glasgow, Scotland
Abstract:Abstract: Using microdialysis in the hippocampus of anaesthetised rats, the concentration of extracellular adenosine was estimated to be 0.8 µ M . Kainic acid (0.1–25 m M ) in the perfusate evoked a concentration-dependent release of adenosine with an EC50 of 940 µ M . Two 5-min pulses of 1 m M kainic acid in the perfusate increased the dialysate levels with an S2/S1 ratio of 0.52 ± 0.03. Kainate-evoked release of adenosine was reduced significantly by 10 µ M tetrodotoxin and by a κ-receptor agonist, U50,488H (100 µ M ). The S2/S1 ratio was reduced by 4.5 µ M 6-cyano-7-nitroquinoxaline-2,3-dione, a non-NMDA receptor antagonist, but not by the NMDA receptor blockers (+)-MK-801 (dizocilpine; 100 µ M ) or (±)-2-amino-5-phosphonopentanoic acid (1 m M ), indicating a non-NMDA receptor-mediated process. The S2/S1 ratio was also reduced significantly by 10 m M ascorbic acid, 10 m M glutathione (a scavenger of hydroperoxides), and 1 m M oxypurinol (a xanthine oxidase inhibitor), indicating the possible involvement of free radicals. Neither the adenosine A1 receptor antagonist 8-cyclopentyl-1,3-dimethylxanthine (100 µ M ) nor the A1 adenosine receptor agonist R (?)- N 6-(2-phenylisopropyl)adenosine (100 µ M ) affected release. Adenosine release evoked by kainic acid is therefore mediated by activation of non-NMDA receptors and may involve the propagation of action potentials and the production of free radicals.
Keywords:Adenosine  Inosine  Hypoxanthine              N-Methyl-d-aspartate  Kainic acid  6-Cyano-7-nitroquinoxaline-2  3-dione  Hippocampus  Microdialysis  Free radicals  Oxypurinol  Xanthine oxidase
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号