首页 | 本学科首页   官方微博 | 高级检索  
     


Regulation of prostaglandin E2 biosynthesis by inducible membrane-associated prostaglandin E2 synthase that acts in concert with cyclooxygenase-2
Authors:Murakami M  Naraba H  Tanioka T  Semmyo N  Nakatani Y  Kojima F  Ikeda T  Fueki M  Ueno A  Oh S  Kudo I
Affiliation:Department of Health Chemistry, School of Pharmaceutical Sciences, Showa University, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan.
Abstract:Here we report the molecular identification of membrane-bound glutathione (GSH)-dependent prostaglandin (PG) E(2) synthase (mPGES), a terminal enzyme of the cyclooxygenase (COX)-2-mediated PGE(2) biosynthetic pathway. The activity of mPGES was increased markedly in macrophages and osteoblasts following proinflammatory stimuli. cDNA for mouse and rat mPGESs encoded functional proteins that showed high homology with the human ortholog (microsomal glutathione S-transferase-like 1). mPGES expression was markedly induced by proinflammatory stimuli in various tissues and cells and was down-regulated by dexamethasone, accompanied by changes in COX-2 expression and delayed PGE(2) generation. Arg(110), a residue well conserved in the microsomal GSH S-transferase family, was essential for catalytic function. mPGES was functionally coupled with COX-2 in marked preference to COX-1, particularly when the supply of arachidonic acid was limited. Increased supply of arachidonic acid by explosive activation of cytosolic phospholipase A(2) allowed mPGES to be coupled with COX-1. mPGES colocalized with both COX isozymes in the perinuclear envelope. Moreover, cells stably cotransfected with COX-2 and mPGES grew faster, were highly aggregated, and exhibited aberrant morphology. Thus, COX-2 and mPGES are essential components for delayed PGE(2) biosynthesis, which may be linked to inflammation, fever, osteogenesis, and even cancer.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号