首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Spatial heterogeneity of passive electrical transfer properties of neuronal dendrites due to their metrical asymmetry
Authors:Sergey M Korogod  Anton V Kaspirzhny
Institution:International Center for Molecular Physiology (Dnipropetrovsk Division), National Academy of Sciences of Ukraine, Dnipropetrovsk, Ukraine.
Abstract:The complex and diverse geometry of neuronal dendrites determines the different morphological types of neurons and influences the generation of complex and diverse discharge patterns at the cell output. The recent finding that each temporal pattern has its spatial signature in the form of a combination of high- and low-depolarization states of asymmetrical dendritic branches with active membrane properties raises the question of the nature of such characteristic spatial heterogeneity of electrical states. To answer this, we consider passive dendrites as a conventional reference case using the known current transfer functions, which we complete by corresponding parametric sensitivity functions. These functions for metrically asymmetrical bifurcations of different sizes, as the simplest elements constituting arborizations of arbitrary geometry, are analyzed under different membrane conductivity conditions related to the intensity of activation of ion channels. Characteristic relationships are obtained on the one hand among the size (branch lengths), metrical asymmetry (difference between sister branches in length and/or diameter), and membrane conductivity, and on the other hand, for the difference between the branches in their current transfer effectiveness as an indicator of their electrical asymmetry (heterogeneity). These relationships (i) allow the introduction of a biophysically based criterion for the electrical distinction between metrically asymmetrical branches, (ii) show how the difference first increases and then decreases with increasing membrane conductivity, and (iii) show that the greatest electrical heterogeneity occurs in a lower or higher range of conductivity, corresponding to larger or smaller bifurcation size. As a consequence, the characteristic low-, medium-, and high-conductance states are derived such that metrically asymmetrical parts of simple and complex trees are electrically distinct when the membrane conductivity lies in the size-related medium range, and indistinct otherwise.
Keywords:
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号