首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Monooxygenase activities of dioxygenases. Benzphetamine demethylation and aniline hydroxylation reactions catalyzed by indoleamine 2,3-dioxygenase
Authors:O Takikawa  R Yoshida  O Hayaishi
Abstract:Benzphetamine demethylase and aniline hydroxylase activities were determined with various hemoproteins including indoleamine 2,3-dioxygenase in a cytochrome P-450-like reconstituted system containing NADPH, NADPH-cytochrome P-450 reductase, and O2. The highest specific activities, almost comparable to those of liver microsomal cytochrome P-450, were detected with indoleamine 2,3-dioxygenase from the rabbit intestine. The indoleamine 2,3-dioxygenase-catalyzed benzphetamine demethylation reaction was inhibited by catalase but not by superoxide dismutase. Exogenous H2O2 or organic hydroperoxides was able to replace the reducing system and O2. The stoichiometry of H2O2 added to the product formed was essentially unity. These results indicate that the dioxygenase catalyzes the demethylation reaction by the so-called "peroxygenation" mechanism using H2O2 generated in the reconstituted system. On the other hand, the dioxygenase-catalyzed aniline hydroxylation reaction was not only completely inhibited by catalase but also suppressed by superoxide dismutase by about 60%. Although the O2- and H2O2-generating system (e.g. hypoxanthine-xanthine oxidase) was also active as the reducing system, neither exogenous H2O2 nor the generation of O2- in the presence of catalase supported the hydroxylation reaction, indicating that both H2O2 and O2- were essential for the hydroxylation reaction. However, typical scavengers for hydroxyl radical and singlet oxygen were not inhibitory. These results suggest that a unique, as yet unidentified active oxygen species generated by H2O2 and O2- participates in the dioxygenase-mediated aniline hydroxylation reaction.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号