首页 | 本学科首页   官方微博 | 高级检索  
   检索      


Xylem structure and water transport in a twiner,a scrambler,and a shrub of Lonicera (Caprifoliaceae)
Authors:Shau-Ting Chiu  Frank W Ewers
Institution:(1) Department of Botany and Plant Pathology, Michigan State University, 48823-1312 East Lansing, MI, USA
Abstract:Summary Wood structure and function was investigated in different growth forms of temperate honeysuckles (Lonicera spp.). All three species had many narrow vessels and relatively few wide ones, with the measured K h (flow rate/pressure gradient) approximately 24–55% of the theoretical K h predicted by Poiseuille's law. Only the twiner, Lonicera japonica, had some vessels greater than 50 mgrm in diameter. The twiner also had the narrowest stem xylem diameters, suggesting the greater maximum vessel diameter hydraulically compensated for narrow stems. Conversely, the free-standing shrub, L. maackii, had the greatest annual increments of xylem but the least percent conductive xylem implying that a great portion of the wood was involved with mechanical support. The scrambler, L, sempervirens had low maximum vessel diameter, high Huber values (= xylem area/leaf area), and low specific conductivities (= measured K h/xylem area), much like the shrub. The greatest vessel frequency occurred in the scrambler (901 vessels · mm-2), the highest thus far recorded in vines. The lowest Huber value and highest specific conductivity occurred in the twiner, suggesting little self-support but relatively efficient water conduction. LSC (= measured K h/leaf area) and maximum vessel diameter of Lonicera vines were near the low end of the range for vines in general.
Keywords:Xylem  Water transport  Lonicera  Hydraulic conductivity  Vessel diameter
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号